HOMEOMORPHIC GRAPHS AND THE THEOREM OF KURATOWSKI

The Polish mathematician Kazimierz Kuratowski discovered an interesting property of planar and non-planar graphs. In fact, it is in honour of Kuratowski that the complete graphs are labelled K_n and the complete bipartite graphs are labelled $K_{m,n}$. However, before we can discuss Kuratowski’s work, we need to look at homeomorphism.

Two graphs G and H are **homeomorphic** if they can be made isomorphic by inserting new vertices (of degree 2) into their existing edges.

For example, the two graphs below are homeomorphic since the addition of the coloured vertices shown will make them isomorphic.

Similarly, all of these graphs are homeomorphic:

Now K_5 and $K_{3,3}$ are both non-planar. It is therefore clear that if either K_5 or $K_{3,3}$ is a subgraph of a graph G, then G must also be non-planar. However, Kuratowski extended this to say that every non-planar graph has a subgraph that is homeomorphic to either K_5 or $K_{3,3}$.

Formally we can state Kuratowski’s theorem:

A graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

For example, these diagrams show a non-planar graph and a subgraph homeomorphic to $K_{3,3}$.

A further result is that:

A graph is planar if and only if it contains no subgraph contractible to K_5 or $K_{3,3}$ by removing edges from the subgraph and merging the adjacent vertices into one.

For example, we can contract the Peterson graph as shown below, thus proving the Peterson graph is non-planar.
EXERCISE

1. Show that these graphs are homeomorphic:

2. Show that all circuit graphs are homeomorphic to C_3.

3. Show that K_4 is homeomorphic to $K_{2,2}$.

4. Suppose G_1 has v_1 vertices and e_1 edges and that G_2 has v_2 vertices and e_2 edges and that G_1 is homeomorphic to G_2. Show that $e_1 - v_1 = e_2 - v_2$.

5. If G is Eulerian and H is homeomorphic to G, is H Eulerian?

6. If G is Hamiltonian and H is homeomorphic to G, is H Hamiltonian?

7. Use Kuratowski’s theorem to show that K_n is non-planar for $n \geq 5$.

8. Use Kuratowski’s theorem to show that the graphs below are non-planar.

9. Can you use Kuratowski’s theorem to show that the graphs below are non-planar?
HOMEOMORPHIC GRAPHS AND THE THEOREM OF KURATOWSKI - ANSWERS

1. If we add the vertices shown, the resulting graphs are isomorphic.

2. Consider the general circuit graph with \(n \) vertices, i.e., \(C_n \) where \(n \geq 3 \).

 If we add a vertex of degree 2 into any existing edge, we generate the circuit graph with \(n + 1 \) vertices, i.e., \(C_{n+1} \).

 \(\therefore \) \(C_n \) is homeomorphic to \(C_{n+1} \) for all \(n \geq 3 \).

 \(\therefore \) by induction, all circuit graphs are homeomorphic to \(C_3 \).

3. Given \(K_3 \), we can add the vertex shown:

 The graph is now isomorphic to \(K_{2,2} \):

 Hence \(K_3 \) and \(K_{2,2} \) are homeomorphic.

4. If \(G_1 \) and \(G_2 \) are homeomorphic, then we can add vertices of degree 2 into their existing edges in some manner so as to form isomorphic graphs \(H_1 \) and \(H_2 \).

 We suppose \(H_1 \) and \(H_2 \) each have \(v \) vertices.

 So, to form \(H_1 \) from \(G_1 \), we add \((v - v_1) \) vertices of degree 2. The sum of the degrees of the vertices of \(G_1 \) is \(2v_1 \), so the sum of the degrees of the vertices of \(H_1 \) is \(2v_1 + 2(v - v_1) \).

 Similarly, the sum of the degrees of the vertices of \(H_2 \) is \(2v_2 + 2(v - v_2) \).

 But \(H_1 \) and \(H_2 \) are homeomorphic, so

 \[2v_1 + 2(v - v_1) = 2v_2 + 2(v - v_2) \]

 \(\therefore \) \(v_1 - v_1 = v_2 - v_2 \) as required.

5. If \(G \) is Eulerian, then all of its vertices have even order.

 Now when we add vertices to \(G \) and \(H \) in order to form homeomorphic graphs, the degrees of the original vertices of \(G \) do not change. Furthermore, since we only add vertices of degree 2, then the resulting graph has only vertices of even degree, and hence this graph is Eulerian also.

 By the same argument, \(H \) must only have vertices of even degree, and \(H \) is therefore Eulerian.

6. No. For example, the graphs below are homeomorphic:

 but only the graph on the right is Hamiltonian.

7. Every complete graph \(K_n \) where \(n > 5 \) has \(K_5 \) as a subgraph.

 \(\therefore \) by the theorem of Kuratowski, \(K_n \) is non-planar for \(n \geq 5 \).

8. a. \(\therefore \) the graph is non-planar.

 b. has subgraph

 which is homeomorphic to

 This is isomorphic to

 which is \(K_{3,3} \).

 \(\Rightarrow \) the graph is non-planar.

 c. can be redrawn as

 which is \(K_{3,3} \).

 \(\therefore \) by the theorem of Kuratowski, the graph is non-planar.